One essential characteristic of dynamic multi-objective optimization problems is that Pareto-Optimal Front/Set (POF/POS) varies over time. Tracking the time-dependent POF/POS is a challenging problem. Since continuous environments are usually highly correlated, past information is critical for the next optimization process. In this paper, we integrate CORAL methodology into a dynamic multi-objective evolutionary algorithm, named CORAL-DMOEA. This approach employs CORAL to construct a transfer model which transfer past well-performed solutions to form an initial population for the next optimization process. Experimental results demonstrate that CORAL-DMOEA can effectively improve the quality of solutions and accelerate the evolution process.